HardLabelEvaluator

CLASS dd_ranking.metrics.HardLabelEvaluator(config=None, dataset: str = 'CIFAR10', real_data_path: str = './dataset/', ipc: int = 10, model_name: str = 'ConvNet-3', data_aug_func: str = 'cutmix', aug_params: dict = {'cutmix_p': 1.0}, optimizer: str = 'sgd', lr_scheduler: str = 'step', weight_decay: float = 0.0005, momentum: float = 0.9, use_zca: bool = False, num_eval: int = 5, im_size: tuple = (32, 32), num_epochs: int = 300, real_batch_size: int = 256, syn_batch_size: int = 256, use_torchvision: bool = False, default_lr: float = 0.01, num_workers: int = 4, save_path: Optional[str] = None, custom_train_trans = None, custom_val_trans = None, device: str = "cuda" ) [SOURCE]

A class for evaluating the performance of a dataset distillation method with hard labels. User is able to modify the attributes as needed.

Parameters

  • config(Optional[Config]): Config object for specifying all attributes. See config for more details.
  • dataset(str): Name of the real dataset.
  • real_data_path(str): Path to the real dataset.
  • ipc(int): Images per class.
  • model_name(str): Name of the surrogate model. See models for more details.
  • data_aug_func(str): Data augmentation function used during training. Currently supports dsa, cutmix, mixup. See augmentations for more details.
  • aug_params(dict): Parameters for the data augmentation function.
  • optimizer(str): Name of the optimizer. Currently supports torch-based optimizers - sgd, adam, and adamw.
  • lr_scheduler(str): Name of the learning rate scheduler. Currently supports torch-based schedulers - step, cosine, lambda_step, and lambda_cos.
  • weight_decay(float): Weight decay for the optimizer.
  • momentum(float): Momentum for the optimizer.
  • use_zca(bool): Whether to use ZCA whitening.
  • num_eval(int): Number of evaluations to perform.
  • im_size(tuple): Size of the images.
  • num_epochs(int): Number of epochs to train.
  • real_batch_size(int): Batch size for the real dataset.
  • syn_batch_size(int): Batch size for the synthetic dataset.
  • use_torchvision(bool): Whether to use torchvision to initialize the model.
  • default_lr(float): Default learning rate for the optimizer, typically used for training on the real dataset.
  • num_workers(int): Number of workers for data loading.
  • save_path(Optional[str]): Path to save the results.
  • custom_train_trans(Optional[Callable]): Custom transformation function when loading synthetic data. Only support torchvision transformations. See torchvision-based transformations for more details.
  • custom_val_trans(Optional[Callable]): Custom transformation function when loading test dataset. Only support torchvision transformations. See torchvision-based transformations for more details.
  • device(str): Device to use for evaluation, cuda or cpu.

Methods

compute_metrics(image_tensor: Tensor = None, image_path: str = None, hard_labels: Tensor = None, syn_lr: float = None)

This method computes the HLR, IOR, and DD-Ranking scores for the given image and soft labels (if provided). In each evaluation round, we set a different random seed and perform the following steps:

  1. Compute the test accuracy of the surrogate model on the synthetic dataset under hard labels. We tune the learning rate for the best performance if syn_lr is not provided.
  2. Compute the test accuracy of the surrogate model on the real dataset under the same setting as step 1.
  3. Compute the test accuracy of the surrogate model on the randomly selected dataset under the same setting as step 1.
  4. Compute the HLR and IOR scores.

The final scores are the average of the scores from num_eval rounds.

Parameters

  • image_tensor(Tensor): Image tensor. Must specify when image_path is not provided. We require the shape to be (N x IPC, C, H, W) where N is the number of classes.
  • image_path(str): Path to the image. Must specify when image_tensor is not provided.
  • hard_labels(Tensor): Hard label tensor. The first dimension must be the same as image_tensor.
  • syn_lr(float): Learning rate for the synthetic dataset. If not specified, the learning rate will be tuned automatically.

Returns

A dictionary with the following keys:

  • hard_label_recovery_mean: Mean of HLR scores from num_eval rounds.
  • hard_label_recovery_std: Standard deviation of HLR scores from num_eval rounds.
  • improvement_over_random_mean: Mean of improvement over random scores from num_eval rounds.
  • improvement_over_random_std: Standard deviation of improvement over random scores from num_eval rounds.

Examples:

with config file:

>>> config = Config('/path/to/config.yaml')
>>> evaluator = HardLabelEvaluator(config=config)
# load the image and hard labels
>>> image_tensor, hard_labels = ...
# compute the metrics
>>> evaluator.compute_metrics(image_tensor=image_tensor, hard_labels=hard_labels)
# alternatively, you can provide the image path
>>> evaluator.compute_metrics(image_path='path/to/image/folder/', hard_labels=hard_labels)

with keyword arguments:

>>> evaluator = HardLabelEvaluator(
...     dataset='CIFAR10',
...     model_name='ConvNet-3',
...     data_aug_func='dsa',
...     aug_params={
...         "prob_flip": 0.5,
...         "ratio_rotate": 15.0,
...         "saturation": 2.0,
...         "brightness": 1.0,
...         "contrast": 0.5,
...         "ratio_scale": 1.2,
...         "ratio_crop_pad": 0.125,
...         "ratio_cutout": 0.5
...     },
...     optimizer='sgd',
...     lr_scheduler='step',
...     weight_decay=0.0005,
...     momentum=0.9,
...     use_zca=False,
...     num_eval=5,
...     device='cuda'
... )
# load the image and hard labels
>>> image_tensor, hard_labels = ...
# compute the metrics
>>> evaluator.compute_metrics(image_tensor=image_tensor, hard_labels=hard_labels)
# alternatively, you can provide the image path
>>> evaluator.compute_metrics(image_path='path/to/image/folder/', hard_labels=hard_labels)